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1. Introduction

This paper examines the problem of estimating
capital asset price volatility parameters from the
most available forms of public data. While many
varieties of such data are possible, we shall con-
sider here only those which are truly universal in
their accessibility to investors, namely, data ap-
pearing in the financial pages of the newspaper.
In particular, we shall consider volatility es-
timators which are based upon the historical
opening, closing, high, and low prices and trans-
action volume. Alternative estimators of volatil-
ity may be constructed from such data as
significant news events, ‘‘fundamental’’ infor-
mation regarding a company’s prospects, and
other forms of publicly available data, but these
will not be considered here.

Any parameter-estimation procedure must
begin with a maintained hypothesis regarding the
structural model within which estimation is to be
made. Our structural model is given exposition in
Section II. Section III discusses the ‘‘classical’’
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Improved estimators of
security price vol-
atilities are formulated.
These estimators em-
ploy data of the type
commonly found in the
financial pages of a
newspaper: the high,
low, opening, and clos-
ing prices and the trans-
action volume. The new
estimators are seen to
have relative efficien-
cies that are considera-
bly higher than the
standard estimators.
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estimation approach which forms the basis of current practice. In
Section IV we introduce some more efficient estimators based upon the
high and low prices. ‘‘Best’’ analytic estimators which simultaneously
use the high, low, opening, and closing prices are formulated in Section
V. Section VI considers the complications raised by trading volume,
and Section VII provides a summary.

II. The Structural Model

The maintained model employed herein assumes that security prices
are governed by a diffusion process of the form

P(t) = $B()), (1)

where P is the security price, ¢ is time, ¢ is a monotonic time-
independent! transformation, and B(¢) is a diffusion process with the
differential representation

dB = adz, 2)

where dz is the standard Gauss-Wiener process and ¢ is an unknown
constant to be estimated. This formulation is sufficiently general to
cover the usual hypothesis involving the geometric Brownian motion of
stock prices, as well as some of the more recently proposed alterna-
tives to the geometric hypothesis (Cox and Ross 1975). Throughout the
remainder of this paper, it shall always be understood that we are
dealing with the transformed price series B = ¢~'P. Thus ‘‘price’”’
would mean ‘‘logarithm of original price,”” and ‘‘volatility”” would
mean ‘‘variance of the logarithm of original prices,”’ etc., in the case of
the geometric Brownian motion hypothesis; the usage will be analo-
gous for other hypotheses possessing other transformations.
Naturally, there are limitations to our maintained model. First, we
are essentially considering each security in isolation, ignoring the
covariation thought to exist among securities in various asset pricing
models (e.g., Sharpe 1970). Second, only one parameter is to be esti-
mated; simultaneous estimation of other unknown parameters, for
example, the ‘‘drift,”’ is not treated here. Third, the required form of ¢
rules out a significant number of alternative diffusion processes, in-
cluding many having arbitrary nonzero drift, even when this drift is
known. Fortunately, most of the foregoing difficulties tend to vanish as
we shorten the interval over which estimation is made.? Finally, divi-
dends and other discrete capital payouts are neglected, since these
violate the continuous nature of the assumed diffusion sample paths.

1. Monotonicity and time independence are employed to assure that the same set of
time points generates the maximum and minimum values of B and P.
2. See Thorpe (1976) for arguments and empirical evidence on this point.
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Moreover, the current paper is not concerned with the question of
whether the maintained model is the ‘‘correct’ model of asset price
fluctuations. Such a study has been an ongoing subject with many
authors over many years, and we certainly could not aspire to settle
this complex issue here. Rather, our purposes are to develop the
estimation consequences of the model, given the data restrictions de-
scribed earlier.

III. “‘Classical’’ Estimation

Under the maintained model, (transformed) price changes over any
time interval are normally distributed with mean zero and variance
proportional to the length of the interval. Moreover, the prices will
always exhibit continuous sample paths. Yet we will not assume that
these paths may be everywhere observed. There are at least two
factors that interfere with our abilities to continuously observe prices:
the first is the fact that transactions often occur only at discrete points
in time;® the second is that stock exchanges are normally closed during
certain periods of time. Our maintained model assumes that the con-
tinuous Brownian motion of (2) is followed during periods between
transactions and during periods of exchange closure, even though
prices cannot be observed in such intervals.

As a matter of choice, we shall concentrate herein on estimators of
the variance parameter o? of B(t). Any such choice of estimation
parameter will have disadvantages in some contexts.? Since such bias
typically vanishes with increasing sample size and is usually small
relative to the other sources of error, we shall ignore this issue to
concentrate upon the estimation of o alone.

Moreover, it is convenient to think of the interval ¢+ € [0, 1] as
representing 1 trading day, since this will prove to be a satisfactory
paradigm for the problems of weekly and monthly data also. Our
““/day’’ will be divided into two portions, an initial period when the
market is closed, followed immediately by a trading period. Figure 1
shows this diagrammatically.

In figure 1 trading is closed initially, starting with yesterday’s closing
with price C,. The price sample path is then unobservable until trading
opens, at time f and price O,. In the interval [f, 1] we shall assume
(ignoring transaction volume for the moment) that the entire sample
path is continuously monitored, having a high value of H,, a low value
of L,, and a closing value of C,. (The effects of monitoring at discrete
transactions will be considered later.) We adopt notation as follows:

3. See Garman (1976) for a treatment of such a model.

4. As Boyle and Ananthanarayan (1977) have recently observed; any estimation
procedure for o2 will produce bias in the estimation of any nonlinear function of ¢, their
example being its use in the ‘‘option pricing formula’’ (See Smith [1976] for a comprehen-
sive survey of the option pricing model originated by Black and Scholes [1973].)
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o? = unknown variance (volatility) of price change;

fraction of the day (interval [0, 1]) that trading is closed;
C, = B(0), previous closing price;

0, = B(f), today’s opening price;

H; = max B(t), today’s high;

f=st=<1

<~
I

L, = min B(z), today’s low;

f<st=<1
C, = B(1), today’s close;
H, — O, the normalized high;
d =L,— 0,, the normalized low;
¢ = C,;— Oy, the normalized close;
gu, d, c; o) = the joint density of (u, d, c) given ¢? and f = 0.

<
Il

The classical estimation procedure employs
G5 =(C, — Cpp?

as an unbiased estimator of o®. The advantages of the classical es-
timator &2 are its simplicity of use and its freedom from obvious
sources of error or bias. Closing prices are measured in a consistent
fashion from period to period, and there is little question about the time
interval being spanned by the estimator. Its principal disadvantage is
the fact that it ignores other readily available information which may
contribute to estimator efficiency. As we shall see, even minor addi-
tions to the utilized information can have remarkable impact.

For example, suppose that opening prices are available in addition to
the closing prices. In this case, form the estimator

(01 — Co)2 + (Cl — 01)2

7 = 0<f<L 3)

g3 =
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Then g% is a “‘better’’ estimator, in the sense discussed next.

The classical estimator ¢ will provide the benchmark by which we
shall judge all other estimators. Therefore, define the relative efficiency
of an arbitrary estimator y by the ratio

~\ _ var(d3)

Eff(y) = ~arG) 4
Since var(G3) = 20* and var(¢?) = o, it follows® that Eff(63?) = 2,
independent of f. Thus we see that, simply by including the opening
price in our estimation procedure, we may halve the variance of our
volatility estimates, given known f. This point argues strongly for the

inclusion of opening prices in a correspondingly useful data base.
The importance of high relative efficiency is obvious, inasmuch as
estimates of improved confidence may be contructed from our data
bases. Alternatively, investigators may adopt the tactic of purposely
restricting data usage to combat unforeseen nonstationarities. For
example, suppose a researcher possesses a data base spanning 10
months. If he discovers an estimator having a high relative efficiency,
say 10, he might choose to reduce his estimator confidence regions by
a factor of V'10. Alternatively, he might decide to use only 1 month’s
data and retain the old confidence regions; his reason for doing this
would be to use the most recent month’s data, since it has presumably
more predictive content in the presence of unknown nonstationarities.

IV. High/Low Estimators

High and low prices during the trading interval require continuous
monitoring to establish their values. The opening and closing prices, on
the other hand, are merely ‘‘snapshots’’ of the process. Intuition would
then tell us that high/low prices contain more information regarding
volatility than do open/close prices. This intuition is correct, as Parkin-
son (1976) has recently shown.® He assumes f = 0 and constructs the
estimator

6% = (H, — L? _ (u —dy )

4 log, 2 4log, 2

Here, Eff(¢%) =~ 5.2. When the high, low, open, and close prices are
simultaneously available, we can also form the composite estimator

(01 — CO)2 + (1 _ a) (u — d)2

7 T-pagz O/ ©

Gi=a

5. Caveat: Note that we are dealing here with the variance of variances, so the fourth
moments of the original quantities are involved.

6. Parkinson actually gives two estimators of volatility, the one described in formula
(5) and another one which employs the square of the sum of the differences of high and
low. However, this latter estimator is biased, and so we do not consider it here.
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which has minimum variance when a = 0.17, independent of the value
of f. In this case, Eff(62) =~ 6.2.

One criticism of the estimators which are based solely on the quan-
tity (4 — d) is that they ignore the joint effects between the quantities u,
d, c, which may be utilized to further increase efficiency. In the
following section we therefore characterize the best analytic estimators
of o2

V. “Best’’ Analytic Scale-invariant Estimators

For our purposes herein, an estimator is ‘‘best”” when it has minimum
variance and is unbiased. We shall also impose the requirements that
the estimators be analytic and scale-invariant, as explained later.

To simplify the initial analysis, we suppose f = 0, that is, trading is
open throughout the interval [0, 1]. Then consider estimators of form
D(u, d, c), that is, decision rules which are functions only of the
quantities u, d, and c¢. We restrict attention to these normalized values
because the process B(t) renews itself everywhere, including ¢ = 0, and
so only the increments from the level O, ( = C,) are relevant. Accord-
ing to the lemma established in Appendix A, any minimum-squared-
error estimator D(u, d, ¢) should inherit the invariance properties of
the joint density of (u, d, ¢). Two such invariance properties may be
quickly enunciated: Forallg? >0and alld <c <u,d <0 =<u, we have

g, d, c;0®) =g(=d, —u, —c; o*) )
and
g,d,c;0?) =g —c,d —c, —c; a?). ®

The first condition represents price symmetry: for Brownian motion of
form (2), B(t) and —B(¢) have the same distribution. Whenever B(t)
generates the realization (4, d, ¢), —B(t) generates (—d, —u, —c). The
second condition represents time symmetry: B(t) and B(1 —t) — B(1)
have identical distributions. Whenever B(¢) produces (#,d, c), B(1 —t)
— B(1) yields ¢ — ¢, d — ¢, —c). By the lemma of Appendix A, then,
any decision rule ¢*> = D(u, d, ¢) may be replaced by an alternative
decision rule which preserves the invariance properties (7) and (8)
without increasing the expected (convex) loss associated with the
estimator. Therefore, we seek decision rules which satisfy

DW,d,c) =D(—-d, —u, —c) )
and
Dwu,d,c)=Du —c,d — c, —c). (10)

Next, we observe that a scale-invariance property should hold in the
parameter space: for any A > 0,

g, d, c; 0% = g(\u, Md, \c; N?o?). (11
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In consequence of (11), we restrict our attention now to scale-invariant
decision rules for which

DQ\u, \d, \¢) = N*Du,d,c), \>0. (12)

If we now adopt the regularity condition that the decision rules
considered must be analytic in a neighborhood of the origin, condition
(12) implies that the decision rule D(u, d, ¢) must be quadratic in its
arguments. (Proof of this is given in Appendix B.) Thus we have

D(Il, d, C) = azoouz + aozodz + a002c2 + anoud + aipuc + aondC. (13)

Scale invariance and analyticity have been combined to reduce the
search for a method of estimating ¢? from an infinite-dimensional
problem to a six-dimensional affair. Applying the symmetry property
(9) and (13), we have the implications a,y, = @g0 and a;oy; = a¢y;- By
virtue of property (10), we have the additional constraint 2a,,, + a9 +
2a,,; = 0, hence we have

D(u,d, c) = azyo® + d?) + Agoec® — 2(@z00 + A1o1)ud
+ aypcu + d).
Insisting that D(u, d, ¢) be unbiased, that is, E[D(u, d, ¢)] = o2, leads
to one further reduction. Since” E[u?] = E[d?] = E[c*] = E[c(u + d)] =
o?and Elud] = (1 — 2 log, 2)o?, we may restrict attention further to the
two-parameter family of decision rules D(.) of the form

Dw,d,c) =a,u —d)?* + ay[cu + d) — 2ud]
+ [1 — (a; + a,)4 log, 2 + a,]c.

(14)

15)

To minimize this quantity, note that, for any random variables X, Y,
and Z, the quantity V(a,, a,) = E[(a,X + a,Y + Z)?] is minimized by a,
and a,, which satisfy

E[(@,X + ayY + 2)X] = E[(a.X + a,Y + Z2)Y] =0.  (16)
Solving the above for a, and a,, we have

_ EIXYIE[YZ] — E[*EIXZ]
4 = TR ] = EXY) (172)

and

_ E[XYIE[XZ] — E[X?]E[YZ]
G = TEXEP] — (EXTIE (170)

In our problem,

X =w — d)?— (4 log, 2)2,
Y=cwu +d)—2ud + (1 — 4log, 2)c2, (18)
Z =

7. See Appendix C for the calculation of moments.
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Analysis via generating functions (Appendix C) reveals the following
fourth moments:

E[u*] = E[d*] = E[c*] = 304,
E[u?c?] = E[d*?*] = 20,
E[u®c] = E[d®] = 2.250%,
E[uc®] = E[dc?®] = 1.50%,

9_
4

Elu?d®] = [3 — 4 log, 2]o* = 0.22740*,
Eludc?] = [2 ~2log, 2 — %§(3)]04 = —0.43810%,

Elud’c] = Elu*dc] = [ 210g, 2 — %m)}o‘* — —0.1881¢%,

Elud®] = E[u®d] = [3 “31log, 2 — %gm]& — _0.43180%,

where {(3) = X%~ 1/k® = 1.2021is Riemann’s zeta function. Substituting
the above moments into (17a) and (17b) via (18), we find that a¥ =
0.511 and a¥ = —0.019. Employing these values in (15) yields the best
analytic scale-invariant estimator

63 = 0511 — d)* =0.019[c(u + d) — 2ud] — 0.383¢%.  (19)

We find that Eff(6%) =~ 7.4. (The more ‘‘practical’”’ estimator 62 =
0.5u — dI? — [2 log. 2 — 1]c? has virtually the same efficiency but
eliminates the cross-product terms.)

Now suppose that 0 < f < 1, that is, trading is both open and closed
in [0, 1]. Then the opening price O, may differ from the previous
closing price C,, and so we may form the composite estimator

o (0, — Cp) Gi
gi=a—L—"Y +(1-a) . (20)
‘ f a-x
The variance of ¢2 is minimized whena = 0.12, and in this case Eff(3)
=~ 8.4. Thus, there exists an estimator possessing an efficiency factor
which is more than eight times better than the classical estimator 62,
given only high, low, open, and close prices.

VI. Volume Effects

The derivation of all of the high-low estimators of the previous sections
depends critically upon the assumption of continuously monitored
price paths. When the path can only be monitored at discrete transac-
tions, all our statistics will be biased. Technically speaking, the knowl-
edge that only a finite number of observations are available should lead
us to commence a new search for the best estimator; however, we shall
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TABLE 1 Expected Values of Volatility Estimators (o2 = 1)
No. Transactions 73 ¢? 7% G3
5 1.03 .48 .55 .38
10 1.01 .67 .65 S1
20 1.00 .82 .74 .64
50 1.00 .92 .82 73
100 1.00 .97 .86 .80
200 1.00 .99 .89 .85
500 1.00 1.00 .92 .89

defer this task to a later paper. We instead confine our considerations
here to determining the extent of the bias in using the estimators
already described when only a finite set of observations is available.
Simulation studies® were employed to arrive at table 1. Note that
the close-to-close estimator 63 has only a slight positive bias.® On the
other hand, the expected values of volatility estimators ¢2 = (C, — O, )?,
J3, and g% are significantly less.than o* whenever a finite number of
transactions take place. Moreover, there are two distinguishable rea-
sons for the observed biases. The estimator é2 has downward bias
because the effective time period over which it is estimated is short-
ened to the span of the first to last transaction, since it is an open-to-
close estimator. The estimators 63 and 63 are also subject to this effect
when trading is closed a portion of the day. (In the absence of other
considerations, finite transaction volume will make the opening appear
later and the closing appear earlier. However, many exchanges will
collect orders during the night for execution at the opening; addi-
tionally, some exchanges have a ‘‘closing rotation’’ in which firm-offer
prices are quoted at the closing. Each of these procedures would tend
to diminish the effective-time bias.) The second reason affects only the
latter high-low estimators, which take on a downward bias because the
observed highs and lows will be less in absolute magnitude than the
actual highs and lows. In addition, the high-low estimators are indi-
rectly affected by the effective-time bias since highs and lows tend to
occur at the first and last transactions.

As a practical procedure, one should divide the corresponding
empirical estimators by the numbers in table 1. Since estimators
d3, 6% are linear combinations of the given estimators, their bias and
that of many others may be quickly computed therefrom.

Random transaction volume is one source of predictable bias some-
what within the scope of the current model. But there are other impor-
tant sources of bias which can be made predictable only by significant

8. Our finite-volume simulations assumed that all transactions are scattered ‘‘ran-
domly”’ (i.e., uniformly) throughout [0, 1].
9. Scholes and Williams (1977) also consider this source of bias.
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extension of the current model. Some of these unpredictable bias
sources are the following: (1) to the extent that transactions themselves
may convey new information, daytime volatilities may be different
from nighttime volatilities; (2) bid-ask spreads exist, within which the
transactions process may be quite complicated (Garman 1976); and (3)
volatilities may otherwise be nonstationary in a variety of fashions.

VII. Conclusions

We have examined a number of estimators of price volatility. Effi-
ciency factors which are at least eight times better than the classical
estimators have been demonstrated. These same estimators are also
subject to more sources of predictable bias, one of the most evident of
which is finite transaction volume. Unpredicted sources of bias await
further empirical work.

Appendix A

Estimator Invariance Properties

Lemma: Let O be a parameter space. Let X = (X,X,, . . . ,X,) be a vector of
(not necessarily independent) observations whose joint density f,(X) depends
on an unknown parameter § € 0O, to be estimated. Let 7:R* — R" be a fixed
measure-preserving transformation. Suppose that, for all § € ® and all X in the
support of fj,

JoIX) = fo(X). (A1)

Let D(X) be any decision rule which estimates 6. Let L(0, D (X)) be any loss
function such that L(9,.) is a convex function for each fixed § € @. Defining T’
= TT’-! where T° is the identity operator, let A, be an averaging operator which
maps decision rules into decision rules according to the prescription

k
1 j—1
ADX) = 7 Zl D(TX). (A2)
Then, for all 6,
EoL(0, Ar(D(X))) < E¢L(0, D(X)). (A3)

Comment: In particular, if L(9,.) is strictly convex, then every noninvariant
rule is subject to improvement. (A rule is invariant with respect to 6, if and only
if Probe[D(X) = D(T'X)] = 1.) In many cases an invariant rule can be con-
structed from D(.). If, for example, T¥X = X, then

i D(T°X)

i=
k—

ADTX)) = %

—

k

LY b + DX) (A%)

Jj=

=A(D(X)).
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Second, if T is measure preserving, then, according to the Mean Ergodic
Theorem, there exists a measurable function D*(.) such that, for almost all X,

lim A,(D(X)) = D*(X), (AS)
k—o0
D*(TX) = D*(X), (A6)
and
EoL(0, D*(X)) < E¢L(6, D(X)). (A7)

Thus, in the interest of minimizing expected loss, attention may often be
restricted to those rules for which D(X) = D(TX).
Proof: By convexity,

k
L(0, AlD(X))) < Z L, D(TX)).

=

Taking expectations,

k
EoL(O, ADX)) < 1 > EoL(8, D(T™'X).

=

It suffices to verify that
EoL(8, D(T'X)) = EoL(6, D(X))
for all j = 1. Computing,

EoL(6, D(T'X)) = f a L0, D(T'X)f(X)dX

- f an L0, D(T'X)f(T'X)dX,
the latter by (Al). By change of variable, this equals

= f n L@©, DY))fo(Y)Ir-idY
= E4L(6, D(X)),

where the Jacobian J,—; = (J;)™ = 17 = 1, since T is measure preserving.

Comment: Note that the transformations prescribed by formulas (7) and (8)
of the text are both linear and satisfy the relation 7% = I (the identity). Hence, it
follows that J,= 'det(T,-)’ = 1.

Appendix B

Analytic Estimators Are Quadratic

Lemma: Estimators D(u, d, ¢) of o which are analytic in the neighborhood of
the origin are quadratic in form.

Proof: If D(u, d, c) is analytic in the neighborhood of the origin, we may
write its Taylor series expansion as

Du,d,c) = z a;puidick, (B1)

i,5,k=0
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Next define
Fyuac) =22 z au'dick — z Qg N Ryidick, (B2)
i,d,k=0 i,j,k=0

From the scale-invariance property (12), F, 4.(\) must be identically zero. It
may also be extended to an analytic function in some open neighborhood of the
origin. Thus, by uniqueness, all coefficients of powers of A in (B2) must be
identically zero. It follows that a;;uid’c* = 0 fori +j + k # 2, thatis, D is
quadratic.

Appendix C
Generating Function of High, Low, and Close!’
The expectation of the moments of u, d, and ¢ is given by

E(urdicr) = (—1)»+ a” |— 0"H(z,5,2) [ , C1
(wrdter) = (=D w o Lorasar Loy D
2n/2r(5 +1)

where n = p + g + r and our generating function H is

H(t,5,2) = st i{ 1 1

1-22 & | @+nk+s+1-z) (Qk+s)2k+i+1+2)
+ 1 + L ()
Qk+t+2)2k+s+1-2) (Qk+s+2)2k+t+1+z)
41 [_ s _ t + ts + ts
1-z2 1+s—2 1+t+z  Q+0)(1+s—z) Q+s)(1+1+2)|
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